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A HIERARCHY OF MECHANISMS BENEFITS OTHER PLANT SPECIES
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Abstract. Studies of facilitation have primarily been limited to single mechanisms, species,
or environments. We examined interacting mechanisms governing the facilitative effects of
Pinus flexilis on two later successional understory species, Pseudotsuga menziesii and Ribes
cereum, in different microhabitats and seasons at the ecotone between the Rocky Mountain
forests and Great Plains grasslands in Montana, USA. In field surveys, 69% of Pseudotsuga
and 91% of Ribes were located beneath P. flexilis even though P. flexilis subcrowns accounted
for a small proportion of available habitat. For three years, we monitored the survival of
Pseudotsuga and Ribes seedlings experimentally planted beneath P. flexilis and in the open at a
windward and a leeward site. Survival of both species was highest beneath P. flexilis at a site
topographically protected from strong unidirectional winds (38% for Pseudotsuga and 63% for
Ribes), and lowest at a windward site and in the open where tree crowns did not provide
shelter from winds (2% and 6%, respectively). These results suggest that wind amelioration
contributed to the facilitative effect of P. flexilis. However, even at the leeward site, where
wind speed was low, survival of Pseudotsuga and Ribes was higher beneath P. flexilis,
suggesting the importance of shade. To explore the relative importance of different
mechanisms, we designed an experiment with six treatments: ‘‘shade,’’ ‘‘shade þ wind,’’
‘‘shade þ drift,’’ ‘‘wind,’’ ‘‘drift,’’ and a ‘‘control.’’ After two years, we found shade to be of
overwhelming importance for the survival of Pseudotsuga and Ribes. Without shade, no other
treatments were significant, but once shade was provided, wind amelioration and snow pack
accumulation increased survival of Pseudotsuga, suggesting that these different facilitative
mechanisms functioned in a nested hierarchical manner: some mechanisms were important
only when others were already functioning. Many studies have demonstrated multiple
interacting mechanisms in the way that plants interact, but to our knowledge hierarchical
interactive processes have not been previously documented. If the effects of positive or
competitive mechanisms are often hierarchical, then studies of isolated mechanisms may not
accurately assess their importance in nature.
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INTRODUCTION

Positive interactions among plant species are well

documented and a large number of facilitative mecha-

nisms have been demonstrated (Hunter and Aarssen

1988, Bertness 1991, Bertness and Shumway 1993,

Callaway 1995, Callaway and Davis 1998, Stachowicz

2001). However, the overall effects of one species on

another are often determined by complex interactions

between suites of facilitative and competitive mecha-

nisms (Callaway et al. 1991, 1996, Rey and Alcántara

2000). Adding to the complexity, just one mechanism

may have positive effects on a neighboring species under

some conditions but negative effects on the same species

under other conditions (Holmgren et al. 1997). Under-

standing the relative importance of interacting mecha-

nisms and variation in the importance of single

mechanisms can provide important insights into pro-

cesses that organize plant communities (Bertness 1998),

as well as the distributions and abundances of individual

species (Callaway 1995).

Facilitative mechanisms may be indirect as neighbors

protect other species from herbivores, increase pollina-

tor visits, concentrate animal-dispersed propagules, and

enhance the effects of mycorrhizae and soil microbes

(Callaway 1995, Stachowicz 2001, Bruno et al. 2003).

Facilitative mechanisms may also be direct, in which

neighbors ameliorate the physical environment for less

hardy species (Vetaas 1992, Callaway 1995, 1997,

Hacker and Bertness 1995, Baumeister 1999, Choler et

al. 2001). Particular conditions that are ameliorated

directly by stress-tolerant benefactors include high

temperature and drought (Muller 1953, Muller and

Muller 1956, Steenberg and Lowe 1969, Nobel 1984,

Everett et al. 1986), low temperature (Carlsson and

Callaghan 1991, Blundon et al. 1993, Choler 2001), high

salinity (Bertness 1991, Bertness and Shumway 1993,
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Fong et al. 1996), low soil oxygen (Schat and Beckhoven

1991, Bertness and Shumway 1993, Callaway and King

1996), and low nutrients (Connell and Slatyer 1977,

Walker and Chapin 1986, Wood and del Moral 1987,

Blundon et al. 1993). Despite a wealth of detailed

research on the mechanisms governing facilitation, few

studies have attempted to identify the relative impor-

tance of different mechanisms operating simultaneously

in the same ecological system.

We studied the relative importance of different

facilitative and competitive mechanisms at the prairie–

forest ecotone on the east front of the northern Rocky

Mountains in Montana, USA. The forest component of

this system is dominated by stress-tolerant limber pine

(Pinus flexilis), an early successional species after fire,

and the only tree species that initially colonizes prairie

grassland. Numerous plant species exist under the

crowns of P. flexilis but not in the open grassland

nearby, suggesting the occurrence of facilitative inter-

actions (Baumeister 2002). Several observations suggest

that the potential facilitative relationships between P.

flexilis and some understory species may be unusual.

Pinus flexilis appears to ameliorate the extraordinarily

high winds that occur along the east front (D.

Baumeister and J. Dean, unpublished data). Wind-related

facilitation has rarely been experimentally investigated.

Protection from wind may function in addition to the

more commonly reported shading of the understory and

accumulation of organic material in the subcrown soil.

We postulated that amelioration of wind, provision of

shade, accumulation of snow pack, alteration of soil

characteristics, and protection of seedlings in the

understory from herbivores are co-occurring mecha-

nisms through which P. flexilis interacts with species

that grow beneath its crown. Additionally, we hypothe-

sized that the relative importance of these different

mechanisms may depend on abiotic conditions and the

beneficiary species considered. For example, the degree

to which P. flexilis ameliorates wind damage is likely to

differ on leeward and windward sides of hills. Secondly,

strong spatial associations occur between P. flexilis and

subcrown species as disparate as the evergreen conifer

Pseudotsuga menziesii Carr. (Douglas-fir) and the

winter-deciduous shrub Ribes cereum Dougl. (wax

currant). These contrasts provide opportunities to

experimentally test theoretical predictions linking abiot-

ic stress with facilitation (Bertness and Callaway 1994)

and the mechanistic nature of species specificity in plant

interactions (Callaway 1998a). Within this context, we

have addressed the following questions: (1) Do patterns

of association between P. flexilis and seedlings of other

species suggest facilitative interactions? (2) What are the

mechanisms of facilitation and do these mechanisms

interact and/or vary in importance with the severity of

environmental conditions? (3) Do the importance of and

the mechanisms of facilitation vary among benefactor

species? We explored these questions by measuring

spatial relationships between P. flexilis and two under-

story species, Pseudotsuga menziesii (see Plate 1) and

Ribes cereum, by comparing environmental conditions

under crowns to the open matrix, and through a series of

field experiments over four years.

STUDY SITE

All research was conducted at the Theodore Roose-

velt Memorial Ranch (TRM Ranch; 4880600000 N,

11284100000 W) located at the mountain–forest ecotone

15 km west of Dupuyer, Montana, USA. The Con-

tinental Divide to the west and south and the Great

Plains to the east delineate the east front of the northern

Rocky Mountains. The front is characterized by a very

sharp ecotone between Rocky Mountain forests and

Great Plains grasslands (Barker and Whitman 1988,

Demarchi and Lea 1992). Over 60% of the land cover at

the ecotone is prairie that is dominated by Festuca

scabrella and F. idahoensis (Redmond and Prather

1996). The prairie is interspersed with shrub patches,

P. flexilis stands, aspen (Populus tremuloides) groves,

and riparian corridors. Annual precipitation in our

research area averaged 70 cm over the last 12 years (R.

Peebles, unpublished data). Snow accounts for 45–75% of

annual precipitation (Moeckel 1997). Temperatures can

PLATE 1. Pseudotsuga menziesii growing beneath canopy
of Pinus flexilis on leeward side of trunk. Photo credit:
D. Baumeister.
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range from�408 to 378C annually (Aune and Kasworm

1989). An exceptional feature of the front is the

occurrence of very intense catabatic, ‘‘Chinook’’ winds

that descend from the mountains onto the prairie

(Caprio et al. 1981, BLM 1992). The direction of these

winds is predominantly from the west-southwest to the

east-northeast. These warming Chinook winds remove

and redistribute snow (altering soil moisture and

microsite insulation), create some of the most highly

diurnally variable temperatures in North America

(Western Solar Utilization Network 1980), and severely

batter plants, removing needles and branches.

METHODS

Spatial relationships between understory

species and Pinus flexilis

To test for positive spatial correlations between P.

flexilis and Pseudotsuga and P. flexilis and Ribes, we

randomly located 50 450-m2 plots containing at least

15% canopy cover of P. flexilis and at least one

Pseudotsuga individual along a 15-km section of the

front near Dupuyer, Montana. The relative proportion

of tree cover was calculated by measuring cover of each

tree crown using the average crown radius from four

readings per tree and then summing the area of all tree

canopies in a plot by species (P. flexilis or Pseudotsuga).

The location (beneath a P. flexilis crown, beneath a

Pseudotsuga crown, or in the open) of all individual

Pseudotsuga and Ribes .5 cm in height was recorded.

For Pseudotsuga, we also recorded whether seedlings

occurred on the windward, ‘‘neutral,’’ or leeward sides

of P. flexilis based on observations of the dominant

wind direction at each tree (i.e., following the clear

pattern of tree ‘‘flagging,’’ or the dominant direction of

limb growth). Throughout the front, wind direction is

highly skewed from the west-southwest. We recorded the

approximate age of each Pseudotsuga individual .1 m in

height beneath a P. flexilis, and the overstory P. flexilis,

by counting rings from 5 mm diameter core samples

taken between 0.3 m and 0.5 m above the ground. This

allowed us to determine which individual appeared first

at each site.

Facilitation experiments

Abiotic conditions.—To measure the general weather

conditions at the study area, a Remote Automatic

Weather Station (USFS standard issue) was set up at the

TRM Ranch on an exposed, open slope (3% slope, 2398

aspect). All experimental plots were located within 1 km

of this station. Hourly measurements included air

temperature, wind speed, wind direction, and maximum

wind speed (gust), and direction of that reading. The

weather station operated from 16 January 1997 to 27

April 1998, from 1 October 1998 to 23 June 1999, and

from 9 September 1999 to 5 October 2000. Non-

continuous readings were due to equipment malfunction

and sharing the equipment with colleagues.

To incorporate variation in abiotic stress into the

sampling design and transplant experiments (see Bert-

ness and Callaway 1994), we selected two stands of low-

density P. flexilis (,40% canopy cover) that differed in

aspect and therefore in wind exposure. One site was fully

exposed to the predominant wind (2398 aspect), here-

after referred to as the ‘‘windward’’ site, and plants there

clearly appeared to experience higher levels of flagging

and wind damage, and the site had much lower snow

cover during the winter. The other site was on a

protected slope (488 aspect), hereafter referred to as

the ‘‘leeward’’ site. Both sites were on the opposite sides

of the same hill and on the same substrate. Pinus flexilis

was the dominant conifer species at both sites but the

leeward site had Pseudotsuga present naturally in the

understory. Soils at both sites were predominantly fine,

calcareous loams (Montagne et al. 1982, Offerdahl

1989).

To compare abiotic conditions under P. flexilis

crowns with those of the open grassland matrix, we

randomly selected 10 P. flexilis trees from each site

(windward and leeward) for analyses of soil moisture,

light, litter depth, and the thickness of A and O

horizons.

We measured soil moisture under P. flexilis crowns in

PVC monitoring tubes installed to 30 cm in depth

beneath each tree; one 1m from the trunk and one 1–2 m

beyond the edge of the crown. A Frequency Domain

Reflectometer (Troxler, Sentry 200-AP; ISM, Malaga,

Washington, USA) was used to periodically measure soil

moisture at 10 cm and at 25 cm from mid-July 1998 to

mid-October 1999. We calibrated reflectometer measure-

ments with gravimetric measurements of soil moisture in

10 soil cores taken beneath trees at the leeward and

windward sites. Soil moisture varied dramatically within

a single day’s measurement, and among the different

days of the measurements. Therefore we recorded and

analyzed the proportional difference between the outside

and subcrown measurements for each individual tree,

and used this number as a replicate.

Available nitrogen and phosphorus (mg/cm3) were

measured using ion exchange resin bags (see Binkley and

Vitousek 1991) from 1 May to 1 October 1999, at the

leeward site only. One resin bag was buried 15 cm deep

within 1 m of the trunk and another 1–2 m beyond the

edge of the crown at each of the 10 randomly selected P.

flexilis. At the end of the 1999 growing season, resin

bags were excavated and their extracts colorimetrically

analyzed for available nitrate, ammonium, and phos-

phorus (Binkley and Vitousek 1991).

Light availability was measured using light sensor

ceptometers (LI-COR, Lincoln, Nebraska, USA) to take

paired, instantaneous photosynthetically active radia-

tion (PAR) measurements directly beneath (within 0.5 m

of the trunk) and 1–2 m beyond each of the 10 P. flexilis

crowns. Under each tree, we sampled light at each of the

cardinal directions, halfway between the trunk and the

edge of the crown, as the mean of a 45-s reading. The
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four measurements were then averaged into a single

mean for a tree or for a point in the open. This

procedure was repeated on three different days during

one growing season on days with ,25% cloud cover.

We measured litter depth beneath P. flexilis as the

average of four measurements taken at the cardinal

directions at 1 m from the tree trunk for each of the 10

P. flexilis trees used for light measurements. Litter depth

in the open was measured at four locations 1–2 m

beyond each of the tree crowns. For each tree, the

thickness of A and O horizons was measured for one 2

cm in diameter soil core taken at 1 m from the tree trunk

and one taken 1–2 m beyond each tree crown.

Seedling survival.—At each site (windward and

leeward), we chose 25 P. flexilis trees .60 years of age

for sites for experimental plantings. We monitored the

survival of 100, one-year-old Pseudotsuga seedlings

planted in the open and another 100 under the 25 P.

flexilis. All seedlings were raised in a greenhouse and

kept in cold storage prior to bare root planting (State

Conservation Nursery, Missoula, Montana). At plant-

ing, seedlings averaged 3.4 6 0.05 mm (mean 6 SE) in

diameter at base and 18.0 6 2.6 cm in height. To

minimize the effects of local adaptation, seeds for bare

root stock were collected at the same elevation as the

study site in the Little Belt Mountains of Montana, 200

km southeast of the TRM Ranch. At each of the two

sites, in May 1997 four Pseudotsuga seedlings were

planted next to each of the 25 P. flexilis trees; two

seedlings within 1 m of the trunk and two seedlings 1–2

m beyond the edge of the P. flexilis crown. We planted

seedlings in microsites with ,50% grass cover and no

shrub cover. Survival of seedlings was monitored every

six weeks during the growing season beginning in mid-

May 1997 and continuing until July 2000. Four seedlings

died within the first six weeks of transplanting and were

replaced with living seedlings. Survival rates were

compared among locations and treatments (leeward/

windward site, beneath/beyond crown, and protected/

unprotected from herbivory). We considered seedlings

to be surviving if at least two green needles were present.

In July 1998, one-year-old Ribes cereum seedlings

were planted beneath the same P. flexilis trees used for

the experiment with Pseudotsuga. All seedlings were

raised in greenhouses and kept in cold storage prior to

bare root planting (Bitterroot Restoration, Corvallis,

Montana, USA). Ribes cereum is common at the study

site, but the seeds used in the experiments were collected

in Yellowstone County, Montana, ;300 km south from

the TRM Ranch. Two Ribes seedlings were planted

under each P. flexilis tree, one ,1 m from the trunk and

one 1–2 m beyond the edge of the crown. Survival of

Ribes seedlings among locations and treatments was

measured approximately every six weeks during the

growing season beginning in mid-July 1998 and con-

tinuing until July 2000. Plants were considered alive if at

least one green leaf was present. In July 2000, all

surviving seedlings of both species were harvested.

Growth rates were measured as the change in total

seedling height from the time of planting until the final

harvest. Root and shoot masses were measured after

drying for 24 h at 658C.

Mechanisms.—Based on spatial associations and

observations suggesting facilitation as we followed the

experimental plantings, we designed a three-way, fully

factorial, blocked experiment to separate the effects of

different likely aboveground mechanisms (i.e., snow

accumulation (drift), wind amelioration, and shade) by

which P. flexilis may facilitate the survival and growth

of planted Pseudotsuga and Ribes. The experiment was

conducted at TRM Ranch on a level plateau dominated

by Festuca grasses with scattered P. flexilis ranging in

age from five to 130 years. A level plateau was selected

rather than a windward and/or leeward slope to keep

wind exposure constant and to eliminate variation in

solar radiation and temperatures experienced by differ-

ing aspects. Soil was fine, calcareous loams (Montagne

et al. 1982, Offerdahl 1989), and homogeneous within

the experimental area. A 2.5 m tall welded wire fence

was erected around the 35 3 15 m area to exclude

domestic and wild herbivores. Within this treeless

experimental exclosure we established different treat-

ments affecting 1 3 1 m plots. Shade treatments

(‘‘shade,’’ ‘‘shade þ drift,’’ ‘‘shade þ no wind,’’ and

‘‘shade þ no wind þ drift’’) were established by fixing

green propylene shade cloth (1.5 3 1.5 m square, 48%

shade reduction) over a PVC frame that covered the

plots in an umbrella shape. Snow deposition and

accumulation treatments (in the form of snow drifts;

‘‘drift,’’ ‘‘shadeþ drift,’’ ‘‘no windþ drift,’’ and ‘‘shadeþ
no wind þ drift’’) were established by erecting plastic

mesh snow fences (0.75 3 1.5 m, with 5 3 10 cm mesh)

directly windward of the plots. These fences allowed

wind to scour the plots but substantially increased the

accumulation of snow in the plots (D. Baumeister,

personal observation). Snow fences were installed in

October of each year and removed in April. In four wind

treatments (‘‘wind,’’ ‘‘shade þ no wind,’’ ‘‘no wind þ
drift,’’ and ‘‘shadeþno windþdrift’’), wind was blocked

with a clear, solid, U-shaped, polycarbonate fence

(HYZOD GP, Sheffield Plastics, Sheffield, Massachu-

setts, USA), 60 cm high 3 150 cm long. This effectively

blocked the wind by .80%, but did not increase snow

deposition and accumulation (D. Baumeister, personal

observation). We checked, but did not quantify, the

efficacy of the snow fences and the polycarbonate shields

every six weeks and observed that the former accumu-

lated a substantial amount of snow whereas the latter

did not. The polycarbonate plastic is highly resistant to

cold temperatures and transmits 89% of visible light and

86% of solar energy (Sheffield Plastics). An additional

treatment with no amendments (‘‘control’’) was also

established. Although the original design of the experi-

ment was fully factorial, the final results and analysis

were not. We excluded treatments ‘‘shade þ no wind þ
drift’’ and ‘‘no windþ drift’’ from final analyses because
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they did not reduce wind speeds while simultaneously

increasing snow deposition and accumulation.

To investigate the effects of treatments on soil water

availability, we installed PVC monitoring tubes 30 cm

deep in the center of each plot. Soil moisture as relative

water content was measured using Frequency Domain

Reflectometry (Troxler, Sentry 200-AP), gravimetrically

calibrated using 10 soil cores from the site. Readings

were taken at 10 cm and 20 cm depths every month

during the growing seasons between 31 May 1998 and 24

August 1999.

Five Ribes seedlings and three Pseudotsuga seedlings

were transplanted into each of 14 replicate quadrats for

each of the nine treatment combinations (including the

two later excluded). Therefore we planted a total of 530

Ribes seedlings and 378 Pseudotsuga seedlings at the

beginning of the experiment. The replicates were based

on the number of seedlings available for the experiment;

and our intent was to maximize the number of replicates

for a treatment while having an adequate number of

seedlings to assess proportional survival within a

quadrat. Seedlings were from the same stock as those

planted beneath P. flexilis trees in the first experiment.

We assessed treatment effects on Pseudotsuga and Ribes

survival and growth. Survival (the presence of at least

two green needles for Pseudotsuga and at least one green

leaf for Ribes) was determined about every six weeks

during the growing seasons of 1998 to 2000. Growth was

measured as the change in total seedling height from the

time of planting until final harvest in July 2000. Root

and shoot masses were measured after drying for 24 hr

at 658C.

Spatial associations and differences in survival among

seedlings of the experimental plantings were compared

by fitting non-transformed survival numbers to log-

normal distribution curves and testing the whole model

and paired treatments with v2 analyses. We tested for

site 3 canopy interactions using repeated-measures

General Factorial Analysis (GLM). Differences in

abiotic conditions were assessed using ANOVA with

aspect and crown cover as fixed variables. Soil moisture

was assessed using repeated-measures GLM in SPSS 8.0

(SPSS 1997). Differences in survival for the field

experiment, as well as survival in the multifactorial

mechanistic experiment, were assessed using MANOVA

and ANOVA with a post hoc Tukey’s test. In this
experiment we assessed the effects of treatments as fixed

effects, and used the means of all Ribes and all
Pseudotsuga within a single plot for the analysis.

RESULTS

Spatial relationships between understory
species and Pinus flexilis

Most Pseudotsuga and Ribes were found beneath

mature P. flexilis (Table 1). Of the 706 Pseudotsuga
seedlings found, 489 (69.3%) were found beneath P.

flexilis, even though P. flexilis occupied only 39% of the
study area. In almost all instances of co-occurrence, P.

flexilis appeared at the site before Pseudotsuga; only
2.6% (or 13) of Pseudotsuga trees were older than the

associated P. flexilis. For Pseudotsuga seedlings located
beneath P. flexilis, the leeward side of the trunk was
most preferred (314 of 489 seedlings; v2¼ 180.1, df¼ 3,

P , 0.0001). For seedlings located in the open, the
leeward side beyond a P. flexilis was also preferred over

windward and ‘‘neutral’’ (i.e., neither windward nor
leeward) (104 of 217 seedlings; v2¼8.5, df¼3, P¼0.04).

The number of Pseudotsuga seedlings found beneath
other Pseudotsuga was not different than would be

expected by chance alone (paired t test, t¼�1.9, df¼ 16,
P ¼ 0.08).

The preference of Ribes for P. flexilis understories was
even greater than that of Pseudotsuga (Table 1): 91% of

Ribes were located beneath P. flexilis. We could not
accurately age Ribes, but 98.3% of Ribes individuals

occurred beneath trees .60 years old, substantially
older than any of the extant stems on Ribes shrubs,

indicating that P. flexilis appeared first at the sample
sites.

Facilitation experiments

Abiotic conditions.—Data from the weather station
confirmed that wind on the front predominantly came

from one general direction, the west-southwest (Fig. 1).
As such, the leeward experimental site likely experienced

a substantial reduction in high-wind events compared to
the windward site, although this was not quantified.

However, we found evidence of reduced abiotic stress at
the leeward site and measured several ecologically

important differences between the sites. Pinus flexilis

TABLE 1. Spatial association between cover types and individual Pseudotsuga menziesii and Ribes
cereum on the east front of the Rocky Mountains, Montana, USA.

Cover type
Proportion of
total cover

Pseudotsuga in cover type Ribes in cover type

Observed Expected Observed Expected

No. (%) No. (%) No. (%) No. (%)

In the open 0.51 131 (19) 360 (51) 43 (8) 264 (51)
Pseudotsuga 0.10 86 (12) 71 (10) 5 (1) 52 (10)
P. flexilis 0.39 489 (69) 275 (39) 470 (91) 202 (39)

Note: We observed 706 Pseudotsuga individuals in 50 450-m2 plots (v2 ¼ 315.4, df ¼ 1, P ,
0.0001) and 518 Ribes individuals in 33 450-m2 plots (v2¼ 583.1, df ¼ 1, P � 0.0001).
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trees were the same age at each site (88 6 13 yr [mean 6

SE] at the windward site and 97 6 9 yr at the leeward

site; one-way ANOVAage, F¼ 0.33, df¼ 1, 19, P¼ 0.57),

yet P. flexilis at the leeward site were much larger than

pines at the windward site. At the windward site P.

flexilis averaged 3.2 6 0.2 m tall, 15.1 6 1.0 cm in

diameter, and had crown radii of 1.2 6 0.1 m vs. 4.5 6

0.1 m, 22.3 6 0.9 cm, and 2.3 6 0.2 m, respectively, at

the leeward site. Furthermore, we found that A soil

horizons were 65% shallower (5.0 6 1.0 cm) at the

windward site than at the leeward site (16.5 6 1.9 cm;

one-way ANOVA, F¼24.7, df¼1, 19, P , 0.000). Also,

A and O soil horizons were thinnest in the open at the

harsher windward site and thickest in the open at the

more moderate leeward site (Table 2).

Pinus flexilis reduced PAR by 40.2% 6 4.5%, and this

reduction did not significantly differ between the wind-

ward and leeward sites. Litter depth was significantly

greater beneath trees than in the open at both sites

(Table 2). Even though trees commonly improve soil

nutrients beneath their canopies (Callaway 1995), we

found no significant differences in P, NO3-N, or NH4-N

in soils beneath trees vs. soils in the open grassland at

the leeward site. Soil moisture was also unlikely as an

important facilitative mechanism because, on average,

soil moisture at 10 cm depth over time was 21.6% 6

FIG. 1. Number (n ¼ 13 559; scale 0–1000) of hourly readings of wind speeds .2.2 m/s by azimuth (from January 1997 to
October 2000). Aspects of experimental sites (windward and leeward) are delineated for reference.

TABLE 2. Soil characteristics beneath Pinus flexilis vs. in the open on leeward and windward aspects of the study site.

Characteristic

Windward Leeward

P. flexilis Open

P

P. flexilis Open

PMeans 6 SE Means 6 SE Means 6 SE Means 6 SE

Litter depth (cm) 4.8 6 0.6 1.2 6 0.3 ,0.001 4.2 6 0.6 1.2 6 0.2 ,0.001
A Horizon (cm) 7.16 1.4 3.5 6 1.5 0.097 11.4 6 3.4 18.8 6 2.7 0.104
O Horizon (cm) 21.4 6 2.6 16.2 6 1.6 0.104 16.0 6 2.9 23.2 6 3.0 0.112
P (mg/cm3) 0.31 6 0.10 0.19 6 0.07 0.364
NO3-N (mg/cm3) 0.13 6 0.05 0.04 6 0.02 0.079
NH4-N (mg/cm3) 0.08 6 0.02 0.05 6 0.01 0.263
Soil moisture, 10-cm depth (relative %) 78.4 6 9.0 100.0 0.016 92.2 6 8.9 100.0 0.138
Soil moisture, 20-cm depth (relative %) 98.5 6 2.5 100.0 0.759 99.3 6 2.3 100.0 0.869

Notes: For each location and site aspect, n¼10. P values for soil characteristics are based on one-way ANOVA. Means (6SE) for
soil moisture are relative to the open, and P values are based on repeated-measures GLM.
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9.0% lower beneath trees than in the open on the

windward side (Table 2; repeated-measures GLM, F ¼
7.13, df ¼ 1, 19, P ¼ 0.016) and tended toward lower

levels under trees on the leeward side (Table 2). The

mean soil moisture for trees on the leeward topography

averaged 17.8% 6 3.1% vs. 10.3% 6 3.6% on the

windward side (P ¼ 0.059).

Seedling survival.—On 5 July 2000, after three full

growing seasons, survival of Pseudotsuga was greatest

for those seedlings planted beneath P. flexilis at the

leeward site (37.5%), and lowest for those seedlings

planted in the open at the windward site, where only one

of 50 seedlings survived (2%; Fig. 2A). At the leeward

site, survival beneath live trees and in the open was

significantly greater than those respective locations at

the windward site (v2
live ¼ 6.08, df¼ 1, P¼ 0.011; v2

open ¼

8.22, df ¼ 1, P , 0.001). Total survival at the leeward

site was 20% compared to 11% at the harsher windward

site. Differences in survival under P. flexilis vs. in the

open were 10 times greater at the windward site (19% vs.

2%, v2
wind¼15.33, df¼1, P , 0.0001), compared to three

times greater at the leeward site (30% vs. 11%, v2
lee ¼

9.11, df¼1, P , 0.001), suggesting that in the abiotically

stressful windward site, facilitation is more important

than at the leeward site. However, in a test of the relative

importance of facilitation by abiotic site condition over

time using a repeated-measures GLM, we found no

significant interaction effect of site aspect3 treatment on

Pseudotsuga survival (F ¼ 1.3, df ¼ 1, 22, P ¼ 0.16).

There were, however, significant effects of site aspect

and treatment when looked at individually (Fhill¼ 14.2,

df¼ 1, 11, P , 0.0001; Ftrt¼ 3.6, df¼ 1, 22, P , 0.001).

FIG. 2. (A) Survival of planted Pseudotsuga menziesii seedlings under Pinus flexilis and in the open on windward and leeward
sites. On 1 October 1997, the initial number was 100 seedlings for each treatment and site. (B) Survival of planted Ribes cereum
seedlings under P. flexilis and in the open on windward and leeward sites. On 1 June 1998, the initial number was 50 seedlings for
each treatment and site. For both species, shared letters on the right designate no significant difference in survival based on v2

analysis of lognormal distribution curves; P , 0.05.
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These results indicate that wind amelioration is an

important facilitative mechanism.

We analyzed the timing of mortality of Pseudotsuga

among sites to tease apart some of the effects of wind

and other potential mechanisms. Differences in the

timing of mortality at different sites were statistically

significant as early as 25 April 1998 for the windward

site (v2 ¼ 17.4, df ¼ 2, P , 0.001) with the greatest

mortality occurring during the first winter (42%) and

subsequent spring (50%). In contrast, far less mortality

occurred at the leeward site in the first winter (26%), but

much higher mortality in the second fall (60%). Differ-

ences in survival by site were not significant until 15 July

1998 at the leeward site (v2¼ 8.9, df¼ 2, P¼ 0.012). In

sum, shade appeared to have the strongest effects on

Pseudotsuga in the winter.

The results for Ribes were similar to those for

Pseudotsuga. On 5 July 2000, after three full growing

seasons, survival of Ribes was highest for those seedlings

planted beneath P. flexilis at the leeward site (62.5%),

and lowest for those seedlings planted in the open at the

windward site, where only three of 48 seedlings survived

(6.3%; Fig. 2B). This trend follows that of Pseudotsuga

and supports the importance of wind as a stress at our

sites. Furthermore, at the leeward site, the overall

survival of Ribes was 42.7% compared to 29.2% at the

harsher windward site. Also, differences in survival

between under P. flexilis and in the open were far

greater at the windward site than at the leeward site

(v2
wind ¼ 6.25, df ¼ 1, P ¼ 0.012; v2

lee ¼ 0.33, df ¼ 1, P ¼
0.564). Survival in the open at the harsher windward site

was significantly less than in the open at the leeward

site, whereas there were no significant differences in

survival beneath P. flexilis between sites (v2
open ¼ 20.3,

df¼ 1, P¼ 0.020; v2
live ¼ 0.14, df¼ 1, P¼ 0.705). Despite

these strongly significant differences between leeward

and windward, in a repeated-measures GLM we again

found no significant effect of site aspect 3 treatment on

Ribes survival (F¼ 1.2, df¼ 1, 8, P¼ 0.31). There were,

however, significant effects of site aspect and treatment

individually (Fhill ¼ 4.1, df ¼ 1, 8, P , 0.01; Ftrt ¼ 10.0,

df ¼ 1, 8, P , 0.01). Survival of Ribes was greater

beneath P. flexilis than in the open at both sites,

suggesting as for Pseudotsuga that other factors may

also play a role in the interactions between P. flexilis

and Ribes.

As for Pseudotsuga, differences in the timing of

mortality also provided insight into the mechanisms by

which P. flexilis facilitates Ribes. The effect of location

(beneath P. flexilis vs. in the open) was significant as

early as 5 September 1998 (three months after planting)

for both sites (v2
wind ¼ 12.3, df¼ 2, P , 0.01; v2

lee ¼ 35.5,

df ¼ 2, P , 0.001). The greatest mortality for Ribes at

the windward site occurred during the first late summer

(45.2%), with additional losses over winter (23.5%) and

subsequent spring (25.0%). In contrast, Ribes at the

leeward site experienced less late summer mortality in

1998 (24.5%), similar mortality during the first winter

(29.6%), and no mortality the following spring (0.0%).

In contrast to Pseudotsuga, the effect of shade on Ribes

was strongest in the summer.

Throughout the duration of the experimental plant-

ing, facilitation of understory species appeared to be

important primarily for survival and not for growth.

There were no significant differences among shoot and

root mass, root-to-shoot ratio, or change in height for

both species when compared among locations and sites.

Most surviving seedlings actually lost aboveground

tissue over the course of the experiment. For surviving

Pseudotsuga, 33.4% of seedlings planted beneath P.

flexilis and 64.3% planted in the open decreased in

height due to the mortality of shoot tips. For surviving

Ribes, 79.6% of seedlings planted beneath P. flexilis and

100% planted in the open decreased in height. This

concurs with observations during repeated assessments

of seedling survival that damaged but living seedlings

had living tissue only a few centimeters above ground

level.

Mechanisms.—In contrast to our interpretations of

spatial associations and experimental transplant results,

in the second experiment we found that shade and not

wind was of primary importance for the survival of both

Pseudotsuga and Ribes (Fig. 3A, B). Without shade no

other treatments were significantly different for either

species (Pseudotsuga one-way ANOVA, F¼ 0.31, df¼ 2,

41, P ¼ 0.73; Ribes one-way ANOVA, F¼ 0.06, df ¼ 2,

41, P ¼ 0.94). For Pseudotsuga, once shade was

provided, other treatments differed significantly (one-

way ANOVAshd, F ¼ 8.68, df ¼ 2, 41, P ¼ 0.001),

suggesting that different mechanisms functioned in a

hierarchical manner. In a separate two-way ANOVA

assessing only ‘‘shade’’ and ‘‘no wind’’ treatments, both

treatments were significant although the interaction of

the treatments was not (Table 3). In a two-way ANOVA

assessing ‘‘shade’’ and ‘‘drift’’ treatments without ‘‘no

wind’’ treatments, both treatments were significant as

was the interaction of the two treatments (Table 3),

further emphasizing the hierarchical effects of the

treatments. Within the shaded plots, Pseudotsuga

survival was lowest without protection from wind and

without enhanced snow deposition and accumulation.

Survival was highest with drift fences where snow had

accumulated (Fig. 3A). As in the transplant experiments,

mortality of Pseudotsuga seedlings was greatest during

the first winter, averaging 84.1% for plots without shade,

35.9% for shade alone, and 16.7% for shade þ wind

barrier, yet only 2.4% for shade þ drift fence (Fig. 3A).

This low winter mortality for Pseudotsuga seedlings in

plots with snowdrifts was followed by 0% mortality in

spring. Snowdrift plots had significantly higher soil

moisture at 20 cm depth in spring and early summer

than the other shaded plots (repeated-measures AN-

OVA, F ¼ 7.0, df ¼ 2, 41, P ¼ 0.003).

For Ribes, survival was greatest in treatments with

shade (91 6 2% vs. 29 6 4%; all shade treatments

combined vs. all no-shade treatments; F¼ 202.6, df¼ 1,
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83, P , 0.001; Fig. 3B). As for Pseudotsuga, once shade

was provided, wind reduction had a significant positive

effect on survival following the first winter (25 April

1999, 1 June 1999, and 16 July 1999; P¼ 0.046; Fig. 3B).

However, there were no significant differences in

survival among treatments with shade cloth at harvest

on 5 July 2000 (one-way ANOVAshd, F ¼ 2.79, df ¼ 2,

41, P ¼ 0.07). In a two-way ANOVA assessing

interactive effects of ‘‘shade’’ vs. ‘‘no wind’’ and ‘‘shade’’

vs. ‘‘drift,’’ only shade was significant (F¼ 117.2, df¼ 1,

13, P , 0.001; F ¼ 100.6, df ¼ 1, 13, P , 0.001,

respectively).

Shade did not increase soil moisture, corresponding

with the lack of crown effects on soil moisture in the

field (Table 2). In the experimental plots, soil moisture at

10 cm was 13.7 6 4.1% greater in the treatments without

shade (repeated-measures GLM, F¼10.1, df¼1, 83, P¼
0.002). At 20 cm, there were no significant differences in

soil moisture (repeated-measures GLM, F¼ 0.02, df¼ 1,

83, P ¼ 0.895).

To understand how shade increased survival, as in the

first experiment we examined the timing of mortality in

plots with and without shade and found that the relative

importance of shade differed between species by season.

FIG. 3. Survival (mean 6 SE) of (A) Pseudotsuga seedlings and (B) Ribes seedlings in experiments designed to test the relative
importance of different facilitative mechanisms. Solid symbols represent shade and open symbols represent no shade: circles (�),
wind blocked; triangles (.), treatment to accumulate drifted snow; squares (n), wind not blocked and no accumulated snow. Each
treatment had 14 replicates, with three seedlings in each replicate for Pseudotsuga and five seedlings per replicate for Ribes. For each
species, data were analyzed with repeated-measures ANOVA (Table 3) and single ANOVA for mortality on the last day of
measurements. Individual bars to the right of the lines indicate significant differences (P , 0.01) in final mortality.
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For the evergreen Pseudotsuga, shade was crucial in the

winter (Fig. 4) with a mortality rate of 84.1% 6 3.4% for

seedlings in plots without shade compared to only 17.5%

6 4.7% for those with shade protection (one-way

ANOVAshd, all shade treatments combined vs. all no-

shade treatments, F¼ 130.1, df¼ 1, 83, P , 0.0001). In

contrast, for the deciduous Ribes, shade was crucial in

late summer of the first year, with a mortality rate of

55.2% 6 4.3% for seedlings in plots without shade

compared to just 2.4% 6 1.2% for those with shade

(one-way ANOVAshd, all shade treatments combined vs.

all no-shade treatments, F ¼ 139.8, df ¼ 1, 83, P ,

0.0001). This timing of mortality follows the same trend

found for those seedlings planted beneath and beyond P.

flexilis in the transplant experiments.

Also similar to the experimental plantings, the

importance of facilitative mechanisms was manifested

primarily in survival and secondarily in growth. Even so,

both species were taller in shade treatments than in no

shade treatments (Table 4). For both species, there were

significantly higher root mass and root-to-shoot ratios

for seedlings surviving in the shaded plots as compared

to the unshaded plots (Table 4).

DISCUSSION

Our results indicate that P. flexilis has strong

facilitative effects on two co-dominant species on the

east front of the northern Rocky Mountains. We found

strong positive spatial associations between P. flexilis

and Pseudotsuga and Ribes, the beneficiaries were more

common on the leeward sides of P. flexilis. Experimental

plantings demonstrated greater survival for both species

beneath P. flexilis, and in field experimental plantings

more Pseudotsuga died on the windward sides of trees,

indicating that the most important benefit of P. flexilis

for Pseudotsuga was protection from the wind, and that

shade was secondary. For Ribes, the effects of wind were

important in some parts of our study, but spatial

patterns of mortality and high mortality in late summer

in the field transplant experiment suggest that shade was

of primary importance, and that wind was secondary. In

our experimental manipulation of mechanisms we found

that shade was overwhelmingly the primary influence on

survival of both species. Wind barriers and treatment to

accumulate snowdrifts were also important for Pseu-

dotsuga, but only in the presence of shade. As such, the

mechanisms governing facilitation appeared to be

related to several interacting abiotic factors (wind, snow

accumulation, and shade), which appear to function, at

least for Pseudotsuga, in a nested hierarchical manner.

In other words, the effect of particular mechanisms

appeared to depend on the presence or absence of other

mechanisms. For Pseudotsuga, without the effect of the

dominant mechanism, shade, other mechanisms were

not effective. Many studies have shown that different

mechanisms can act synergistically, but to our knowl-

edge this is the first evidence for hierarchical inter-

actions, and in particular hierarchical interactions

involving facilitation.

Shade, wind amelioration, and snow accumulation

can be produced by other potential facilitators in our

system, yet young Pseudotsuga and Ribes were not

preferentially associated with mature Pseudotsuga. We

do not know why these two conifers differed in their

apparent nurse ability, but variation in facilitative effect

can be caused by many subtle factors (Callaway 1998b).

For example, there appeared to be much less light under

Pseudotsuga than under P. flexilis, raising the possibility

that Pseudotsuga was providing too much of a good

thing. Furthermore, Pseudotsuga crowns did not come

as close to the ground as those of P. flexilis and may

have provided less of a wind block. Regardless, this

species-specific pattern points to P. flexilis as an

important ecosystem engineer (Jones et al. 1994, 1997)

on the east front of the Rockies, performing functions

that other species cannot.

TABLE 3. Two-way repeated-measures ANOVA analysis of
factors affecting survival of Pseudotsuga menziesii.

Source of variation df MS F P

A) Effects of ‘‘shade’’ and ‘‘no wind’’ treatments

Intercept 1 210.8 751.0 ,0.001
Shade 1 17.7 63.0 ,0.001
No wind 1 1.6 5.6 0.022
Shade 3 no wind 1 0.9 3.1 0.086
Error 52 0.3

B) Effects of ‘‘shade’’ and ‘‘drift’’ treatments

Intercept 1 227.1 1061.6 ,0.001
Shade 1 24.7 115.5 ,0.001
Drift 1 3.2 15.1 ,0.001
Shade 3 drift 1 2.9 13.4 0.001
Error 52 0.2

Note: For ‘‘no wind’’ treatment, wind was blocked with a
clear, solid, U-shaped, polycarbonate fence; for ‘‘shade’’ treat-
ment, green propylene shade cloth accomplished a 48%
reduction in light; and for ‘‘drift’’ treatment, plastic mesh snow
fences were erected on the windward of the plots.

FIG. 4. Mortality (mean þ SE) by season for Pseudotsuga
seedlings in experiments designed to test the relative importance
of different facilitative mechanisms. For statistics see Results:
Facilitation experiments: Mechanisms.
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Shade provided by trees has been shown in many

studies to facilitate understory species (Walker and

Chapin 1986, Jones et al. 1994, Callaway 1995). Shade is

important in summer for reducing soil and leaf temper-

atures and evapotranspiration in understory environ-

ments (Smith et al. 1987, Vetaas 1992, Belsky 1994).

Ribes mortality was highest in summer in those plots

without shade. Ribes tends to be more drought tolerant

than other common shrubs in the area (Lesica 1989), but

during our experiments soil moisture decreased to very

low levels, particularly in late summer. For Ribes

planted beneath P. flexilis, shade provided by the crown

may have offset the effects of lower soil moisture

recorded beneath the crown simply by keeping leaf

temperatures cooler.

Frequency domain reflectometry measures relative

water content of the soil and not water potential. Water

potential is correlated with relative water content but

varies widely with soil texture. In general, soils in the

open had more clay and were denser than soils beneath

trees (D. Baumeister, personal observation). As such, at

equal relative water content values, our measurements of

soil water may not have accurately reflected water

potential (i.e., water actually available to plants), and it

is possible that water availability beneath the crowns

was actually higher than in the open. If this is the case,

we may have underestimated the importance of crown

facilitation of soil water, and we cannot rule out that

seedlings, particularly Ribes, might also benefit from

belowground factors (i.e., water) beneath trees.

Even though shade was primary in a hierarchy of

mechanisms, shade appeared to manifest its effects on

Ribes and Pseudotsuga in different seasons, summer and

winter, respectively (Fig. 4). In winter, environmental

stress for an evergreen species, such as Pseudotsuga,

includes high irradiation levels because of increased

reflectance off of snow and cold temperatures, the ideal

conditions for inducing low-temperature photoinhibi-

tion in many plants (Öquist 1983, Powles et al. 1983,

Germino and Smith 2000). In high light, low temper-

atures can amplify photoinhibition, a light-dependent

depression of photosynthetic rate that occurs when

leaves absorb more light than can be used (Krause

1994). For young Pseudotsuga establishing on the east

front without the benefit of shade, chronic, possibly

fatal, photoinhibition (Osmond 1994) may be occurring,

especially on cold sunny days. In winter, P. flexilis

crowns may facilitate Pseudotsuga by preventing photo-

inhibition through reduction of PAR and insulation

from cold temperatures (DeLucia and Smith 1987, Ball

1994, Germino and Smith 2000).

The far greater abundance of seedlings on the leeward

sides of trees, the relative success of transplants at the

leeward site, and the significant effects of windbreaks in

mechanistic experiments demonstrated the importance

of wind amelioration as a facilitative effect. Pinus flexilis

exhibits a growth form similar to krummoltz with

numerous low-lying branches and hence can effectively

minimize wind speeds, even at ground level. Wind can

adversely affect growth and physiological activities of

plants through physical stress as well as physical

reduction of the boundary layer (Grace 1977, Nobel

1981, van Gardingen and Grace 1991, Ennos 1997). The

latter causes both increased transpiration rates yielding

greater water loss and decreased temperatures resulting

in slower metabolic rates (Öquist 1983, van Gardingen

and Grace 1991). Additionally, in harsh environments

similar to the east front, abrasion from windblown soil

particles and ice has been found to reduce cuticular wax

and increase loss of plant water (Hadley and Smith 1986,

van Gardingen and Grace 1991). A few other studies

suggest neighbor amelioration of wind may be an

important facilitative mechanism. In the Patagonian

steppe, average wind velocity is 80% lower on the

leeward side of shrubs and evaporation rates are less

than half of those for plants on the windward side

(Soriano and Sala 1986, Aguiar et al. 1992). In Swedish

Lapland, Carlsson and Callaghan (1991) showed that

Carex bigelowii increased in leaf length and culm height

when growing within clumps of Empetrum hermaphro-

TABLE 4. Changes in height, shoot mass, dry root mass, and root-to-shoot ratio of surviving
Pseudotsuga menziesii and Ribes cereum from experimental plots at harvest in July 2000.

Source of variation

No shade Shade ANOVA

Mean 6 SE n Mean 6 SE n F df P

Pseudotsuga

Height (cm) –7.9 6 0.7 9 –1.0 6 1.4 38 4.7 1, 47 0.036
Shoot mass (g) 1.4 6 0.3 9 1.4 6 0.1 38 0.0 1, 47 1.000
Root mass (g) 1.5 6 0.5 9 3.2 6 0.4 38 4.0 1, 47 0.052
Root : shoot 1.0 6 0.2 9 2.2 6 0.2 38 6.6 1, 47 0.014

Ribes

Height (cm) –11.5 6 1.0 30 –6.4 6 0.7 47 19.9 1, 76 0.000
Shoot mass (g) 0.9 6 0.1 30 0.9 6 0.1 47 0.0 1, 76 0.951
Root mass (g) 0.8 6 0.1 30 1.2 6 0.1 47 20.0 1, 76 0.000
Root : shoot 0.9 6 0.1 30 1.4 6 0.1 47 19.5 1, 76 0.000

Notes: Shade treatments were pooled because there were no significant effects of other factors.
No shade represents the ‘‘control,’’ ‘‘wind,’’ and ‘‘drift’’ treatments. Shade represents the ‘‘shade,’’
‘‘shadeþ drift,’’ and ‘‘shadeþ wind’’ treatments. See Table 3 for treatment terminology.
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ditum or Racomitrium lanuginosum. They experimentally

manipulated the effects of wind by erecting artificial
shelters and found that shelters elicited similar responses

from Carex.
On the east front of the northern Rocky Mountains,

wind speeds can be exceptional. During the first winter,
from 26 October 1998 to 25 April 1999 (April is still

winter in Montana), the mean wind speed was 4.6 6 0.1
m/s [mean 6 SE] with gusts up to 47 m/s and sustained

winds up to 22.4 m/s, significantly greater than in
summer (from 1 May to 30 September; n¼ 1825; 4.6 6

0.1 m/s vs. 3.1 6 0.05 m/s). In addition to consistently
strong winds, catabatic ‘‘Chinook’’ winds can increase

air temperatures as much as 258C in one hour and have
wind speeds exceeding 56 m/s (Brinkman 1971). In

Chinook belts, such as the front, snow cover typically
lasts only a few days and bare ground is present

throughout most of the winter (Western Solar Utiliza-
tion Network 1980). In general, winter days with above-

freezing temperatures were significantly windier (4.8 6

0.1 m/s) than those with below-freezing temperatures

(2.9 6 0.1 m/s). Higher temperatures that come with
Chinook winds may create unusually harsh conditions

for Pseudotsuga by stimulating photosynthesis during a
time when the ground remains frozen. The warming of

the leaf tissue and subsequent water loss without
replenishment from the roots may cause winter desic-

cation and the mortality we measured at first reading in
spring. In contrast to Pseudotsuga, Chinook-caused

winter mortality for the deciduous shrub Ribes was
more likely to have been caused by thawing and freezing

of stem tissues (see Frey 1983). During the period from
10 October 1998 to 15 April 1999, six freeze–thaw cycles

(more than three days of temperature ,58C followed by
at least one day of temperature .58C) concurred with

Chinooks.
For Pseudotsuga, snowdrifts may have prevented

photoinhibition, winter desiccation, and abrasion from
blowing snow and ice. Snow accumulates in drifts on the

leeward side of trees as a result of the fluid dynamics of

wind (Billings and Bliss 1959, West and Caldwell 1983).

At our study area, hard-packed snowdrifts formed on

the leeward side of trees and most stayed throughout the

winter, even during Chinooks (D. Baumeister, personal

observation). Positive effects of snow cover on plants are

many: (1) the maintenance of higher soil temperatures

during winter (þ1 to �38C), (2) the moderation of

temperatures, (3) reduction of cuticular abrasion due to

wind during winter, (4) protection against photoinhibi-

tion, (5) provision of melt water, (6) protection against

winter grazing by animals, (7) accumulation of blown

soil, (8) increased availability of nutrients from leaching,

and (9) higher annual decomposition rates of soils

(Billings and Bliss 1959, Holway and Ward 1963, Bleak

1970, Canaday and Fonda 1974, Weaver 1974, Schwab

et al. 1987, Evans and Fonda 1990, Taylor and Jones

1990, Walker et al. 1993, Germino and Smith 2000).

Our evidence for amelioration of wind damage and

cold temperature photoinhibition at lower timberline is

similar to that described by others for upper timberlines.

Egerton et al. (2000) found that protected seedlings of

Eucalyptus pauciflora at high elevations were less

photoinhibited than those in the open. Germino and

Smith (1999, 2000) found that Abies lasiocarpa and

Picea englemanii seedlings were most common in

habitats with ;40–80% of the overhead area open to

the sky, and demonstrated that seedlings in these

habitats benefited from the way in which overstory

canopies ameliorated nighttime temperature and low-

ered light levels. Based on evidence for wind-based

facilitation at upper timberline, Smith et al. (2003)

proposed ‘‘another perspective on altitudinal limits of

alpine timberlines.’’ They argued that mature trees

protect recruits from severe mechanical damage from

wind and that recruitment away from this protection

was severely restricted. In sum, a growing body of

evidence indicates that both biotic and abiotic factors

play a primary role in development and stability of

timberlines.

FIG. 5. Conceptual model for the realized niche expansion for Pseudotsuga and Ribes due to facilitation from P. flexilis. Pinus
flexilis ameliorates PAR, wind, and temperature through crown cover, physical obstruction of wind, and snowdrifts, thereby
extending the fundamental niche of these understory species to include the larger realm as their realized niche. Facilitative
mechanisms protect Pseudotsuga and Ribes from desiccation, photoinhibition, and from ice and snow abrasion, depending on the
abiotic conditions at a particular time. Approximate percentages of days per annum with each combination of conditions as
determined from the weather station are denoted as percentages. Only 10% of days have conditions within the fundamental niches
of these species.
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Our results suggest a relatively minor role for

beneficiary species on soil P, N, and water, which

contrasts with many other mechanistic studies of

facilitation (Tiedemann and Klemmedson 1977, Weltzin

and Coughenour 1990, Callaway et al. 1991, Callaway

and King 1996, Pugnaire et al. 1996, Kieft et al. 1998).

In fact we found either no differences in these variables

between tree and open matrix locations or that these

resources were more abundant in the open matrix. For

nutrients, however, the lack of a crown effect may have

been due to inadequate sampling; we only compared

understory soils to the open for 10 trees at the leeward

site. We do not know why these trees had such weak

effects on soil resources, but if P. flexilis is shallow

rooted its uptake of water and nutrients may exceed

inputs via litterfall and shade (see Callaway et al. 1991).

By altering the availability of resources, including

nutrients, water, and light, changing the way that energy

and materials are cycled, or altering the effects of

disturbance plants can potentially reconstruct the

realized niches for other species (see Jones et al. 1994,

1997, Laland et al. 1999, Bruno et al. 2003). We found

that Pinus flexilis appears to expand or even produce

realized niches for Pseudotsuga and Ribes in a number of

different ways that are depicted in Fig. 5. Young

Pseudotsuga and Ribes seedlings establishing without

the benefits of P. flexilis would likely be restricted to

those rare niches with moderate temperatures, low wind

levels, and low PAR. Through the provision of shade, P.

flexilis greatly expands the realized niche for Pseudotsu-

ga and Ribes along the y-axes, whereas wind amelio-

ration allows for niche expansion along the x-axes of

Fig. 5. Snowdrifts, in particular, allow for a larger

realized niche along both axes by ameliorating wind,

light, and temperature. Indeed, in our mechanistic

experiment, we found highest survival for Pseudotsuga

in the ‘‘shade þ drift’’ treatment. Annually, only 10%

(8% below zero, 2% above zero) of hourly abiotic

readings taken at the weather station were low light and

low wind. Over 81% of the days were sunny (data not

shown), perhaps helping to explain the importance of

shade as a mechanism for both species.

Our results provide strong evidence for the impor-

tance of positive interactions during succession at the

ecotone of the Rocky Mountain front. Facilitative

strength depended not only on the particular beneficiary

species involved, but also on environmental conditions

and season. In this system, several facilitative mecha-

nisms operated simultaneously, but in a hierarchical

manner of relative importance that determined the

overall effect of the overstory tree on understory plants.

The significance of wind reduction and snow pack was

detected only after shade was provided. To our knowl-

edge, the demonstration of hierarchically dependent

facilitative mechanisms in interactions is unique in the

literature. Understanding the way in which interactive

mechanisms function is prerequisite to understanding

the shifting roles of competition and facilitation on

abiotic gradients, conditional facilitative effects, and

species specificity in facilitation, all of which are

important processes determining the structure and

function of plant communities. If the effects of positive

or competitive mechanisms are often hierarchical, then

studies of isolated mechanisms may lead to incorrect

conclusions about their importance in nature.
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